
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 1

An Online Fair Resource Allocation Solution for Fog Computing

Jia He Sun, Salimur Choudhury, and Kai Salomaa
Fog computing is a complementary computing paradigm to the existing cloud computing. A fundamental problem of fog computing

is how to allocate the computing resources of fog nodes when scheduling tasks that arrive in an online manner. Other than task
completion speed metrics, fairness of resource allocation between competing users is also an important metric to consider. One such
metric is Dominant Resource Fairness (DRF), a fairness scheme that guarantees four key qualities: incentivized sharing, strategy-
proof, Pareto-efficiency, and envy free. This paper examines the multi-resource, multi-server, and heterogeneous task resource
allocation problem from a DRF perspective. Four different types of tasks are considered: ordered/unordered, splittable/unsplittable.
Three low complexity heuristics are proposed to maximize fairness between users. Results show that the proposed heuristics are at
least comparable to three baseline scheduling algorithms in terms of task completion speed while achieving higher fairness between
users.

Index Terms—fog computing, fair resource allocation, heuristic, online scheduling

I. INTRODUCTION

IN recent years, distributed computing infrastructures have
evolved at an rapid pace. With it, the sheer quantity of

computational devices that comprise the edge layer of these
large scale networks is astounding [1]. As a result, the vast
amount of data produced by the edge devices as well as
the computational needs required by the edge devices have
become severe bottlenecks in large scale networks that rely
on cloud computing. Fog computing is an one of several
emerging complementary computing paradigms that aim to
address current limitations in cloud computing [2]. As dis-
played in Fig. 1, fog computing introduces an intermediary
layer between the cloud layer and the edge layer named the
fog layer. This fog layer is comprised of many fog nodes
that provide data processing and analysis for the edge devices
with reduced latency and increased quality as well as data
filtering and load management for the cloud layer. Overall, the
implementation of the fog layer aims to provide better service
to the end devices while reducing the burden on the cloud
layer by managing data analysis and computational requests
at an intermediate level.

To accomplish this, part of the fog layer’s job is to receive
and process computational service requests put forward by
edge devices. In this infrastructure, computational service
requests can be observed by several fog nodes. Each request
can be decomposed into a set of tasks and each fog node
can be decomposed into a set of resources. Consequently, the
task scheduling problem is one of the main focuses of current
research in the fog computing field [3].

As shown in Fig. 2, resource allocation and task scheduling
algorithms can be categorized as either static or dynamic.
In static scheduling, information regarding every incoming
task are made available to the system. On the other hand, in
dynamic scheduling, the resource requirements of each task are

This paper was submitted in enter date 2022.
J. H. Sun is with the School of Computing, Queen’s University, Kingston,

ON K7L 3N6 Canada (email: 20jhhs@queensu.ca).
S. Choudhury is with the Department of Computer Science,

Lakehead University, Orillia, ON L3V 0B9 Canada (email:
salimur.choudhury@lakeheadu.ca).

K. Salomaa is with the School of Computing, Queen’s University, Kingston,
ON K7L 3N6 Canada (email: ksalomaa@cs.queensu.ca).

not known until its arrival. Due to the dynamic nature of the
numerous edge devices in a fog environment, this paper’s focus
is dynamic scheduling algorithms, more specifically, real-time
scheduling algorithms where the tasks arrive to the system in
a continuous manner. In this paper, we will call this online
scheduling.

There are two main approaches to online scheduling, the
first is termed completely reactive scheduling where tasks
are scheduled as they arrive based on a set of predefined
rules or heuristics [4]. This approach easily handles randomly
arriving tasks but often performs far from the optimal due to
the reactive nature of the algorithm [5]. The second approach
is predictive-reactive scheduling where an initial schedule is
constructed for existing tasks and then revised when certain
events occur such as new task arrivals or machine breakdowns.
Predictive-reactive scheduling usually performs better than
completely reactive scheduling, but due to the dynamic nature
of the fog computing environment where large amount of
tasks are continuously arriving, it is inappropriate to adopt
the predictive-reactive scheduling approach [6] [7].

There many works regarding online scheduling techniques
in various settings, Ouelhadj and Petrovic give a detailed
survey of such methods [5]. Many of these scheduling schemes
focus on some measure of task completion time (makespan,
lateness, etc). However, resource fairness is an objective that is
often critical in computing environments. Allocating resources
with respect to fairness and efficiency is a fundamental prob-
lem in the design of fog computing environments. Maintain-
ing fairness ensures that a balanced allocation of resources
amongst the tasks where no tasks are starved at the expense
of another. Furthermore, resource fairness also encourages
maximizing utilization of all available resources. Maintaining
resource fairness is an area quite heavily explored during
the development of cloud computing several years ago. In
2009, Microsoft published the ”Quincy” scheduler that maps
a scheduling problem to a graph data structure that computes
the optimal schedule that maximizes a global cost function that
includes locality and resource fairness [8]. In 2010, Zaharia
et al. proposed an algorithm called ”Delay Scheduling” to
address the conflict between locality and fairness for the 600-
node Hadoop cluster at Facebook [9].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 2

Fig. 1. Fog Computing Infrastructure Diagram

However, since fog computing is an area that has only
recently emerged, resource fairness within a fog environment
is a much less explored topic. In 2018, Zhang et al. proposed
Fair Task Offloading (FTO) scheme that minimizes task delay
and energy consumption while maintaining fairness between
network nodes [10]. In 2019, Mukherjee et al. proposed
a scheduling policy that maximizes the number of tasks
completed before their deadline while maintaining fairness
by keeping both high priority and low priority task queues
stable [11]. However, the both of these scheduling schemes
only maximize fairness between different fog nodes instead of
between participating users. This is also true for the Quincy
scheduler and the Hadoop Delay Scheduling algorithm.

Fairness between users who request tasks can be evaluated
by ”Dominant Resource Fairness” (DRF), an index developed
by Ghodsi et al. in 2011 [12]. The DRF scheme is a multi-
resource generalization of max-min fairness. According to the
DRF scheme, in a multi-resource environment where tasks
have heterogeneous resource demands, a user’s dominant share
is the maximum global share that the user has been allocated
of any resource. In essence, the DRF scheme aims to have all
users have equal dominant share values in any allocation. In
their publication defining the DRF scheme, Godhsi et al. con-
sidered many other fairness schemes including Asset Fairness
and Competitive Equilibrium from Equal Incomes (CEEI).
Asset Fairness aims to equalize the aggregate resource value
allocated to each user assuming that equal shares of different
resources are worth the same. That is, 1% of resource 1 is
equivalent to 1% of resource 2. CEEI, the preferred method
of fair resource allocation in microeconomic theory, initially
allocates 1

n of each resource to each user and subsequently,
each user can trade their resources with other users. Godhsi
et al. found that the DRF scheme is the only fairness scheme

that satisfies the following four key qualities:
• Sharing Incentive: every task’s allocation is not worse off

than that obtained by evenly dividing the entire resource
pool

• Strategy-proof: tasks cannot get better allocation by lying
about their requirements

• Pareto Efficiency: all available resources are allocated
subject to satisfying the other properties, and without
preempting existing allocations

• Envy Free: no tasks prefers the allocation of another task
Asset Fairness violates the sharing incentive quality and

CEEI violates the strategy-proof quality. All of the above
qualities are desired in a fog computing environment and
would increase the Quality of Service (QoS) for users. So far,
it remains a difficult problem to design an online resource al-
location scheme while maintaining multi-server multi-resource
fairness. In 2019, Bian et al. tackles this problem and proposed
”FairTS”, a fair online task scheduling scheme that uses DRF
as their fairness scheme [7]. FairTS uses a Reinforcement
Learning (RL) approach to minimize average task slowdown
while maximizing the minimum dominant resource share of
each task. However, as a machine learning based algorithm,
FairTS falls behind heuristics in terms of computation speed,
a much desired attribute in fog computing environments.
Furthermore, FairTS is designed for a simplified model where
all resources are located in one computer/server. However,
in a realistic fog setting, task requests would be sent to be
processed by a collection of fog servers. In 2014, Wang et al.
proposed ”Dominant Resource Fairness with Heterogeneous
Servers” (DRFH), which is a generalization of DRF for
multiple heterogeneous servers [13].

DRFH preserves the strategy-proof, Pareto efficiency, and
envy free qualities of DRF. The sharing incentive strategy is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 3

Fig. 2. Taxonomy of Scheduling Algorithms

not well defined in a multi server setting as there is an infinite
number of ways to evenly divide the resource pool. In 2017,
Östman proposed a Distributed Dominant Resource Fairness
(DDRF) scheme that uses a gradient network topology overlay
to create a dynamic directed sorted graph based on their users’
resource share. The proposed scheme allows multiple servers
to allocate resources in parallel to achieve faster allocation
time [14]. However, similar to the proposed DRFH scheme, the
environment considered is also very basic. It only considers the
case where each user will have an infinite amount of divisible
homogeneous tasks. In fact, after the proposal of the DRF
scheme in 2011, its assumption of divisible tasks is a heavily
discussed topic as it contradicts the Leontief preferences [15].

In practice, users will usually have indivisible tasks that
are also heterogeneous. In [9], Zaharia et al. revealed the
resource usage profiles of tasks in a 2000-node Hadoop cluster
at Facebook over one month (October 2010) and showed that
the requested tasks have very different resource requirements.
Furthermore, there may be other requirements and characteris-
tics for each user such as ordering and splittable-ness. A user’s
tasks can be ordered where they must be completed in a task
chain. A user’s tasks can also be splittable where they can
be allocated more than their required amount of resources to
be completed faster. This paper will consider the fair resource
allocation problem under these more realistic conditions.

The main contributions of this paper can be summarized as
follows:

• Formulate the multi-resource, multi-server, and hetero-
geneous task resource allocation problem as a fairness
maximizing problem using the DRF scheme.

• Propose three low complexity heuristics for different
types of tasks: ordered/unordered, splittable/unsplittable.

• Evaluate the proposed heuristics against three baseline
scheduling algorithms.

The rest of this paper is organized as follows: we will
describe the system model, formulate the problem, propose
our solution, analyze the proposed solution, display simulation
results, and conclude the paper.

II. SYSTEM MODEL

In a fog computing system, n users will be connected
to k nearby fog node servers S = {1, ..., k}. Each server
contributes m resources R = {1, ...,m}. Each server j has
resource capacity cj = {cj1, ..., cjm} where each element is
represented as a fraction of the total amount of said resource in
the entire system. That is, for every resource, the total capacity
of all servers added together is 1. This paper will consider a
time step system, where a set of users will arrive to the system
at the beginning of each time step in an online manner. Each
user n = 1, 2, ... will have a set of heterogeneous tasks that
need to be completed. In this set, each task i = 1, 2, ... is
characterized by:

• Arrival time tarri

• Time steps required for computation li (assuming re-
source demands are met)

• Resource demand vector Di = (Di1, ..., Dim)T where
each Dir is a fraction over the total amount of resource
r in the entire system (assumed to be non-negative)

• Task i’s global dominant resource r∗i := argmaxr∈R Dir

• Normalized resource demand vector di = (di1, ..., dim)T

where dir = Dir/Dir∗i
for each resource r

Under the DRF scheme, each user is characterized by its
global dominant share.

Definition 1: Under the DRF scheme, the global dominant
share of user i under allocation Ai is defined as:

Gi(Ai) :=
∑
j∈S

min
r∈R
{Aijr/dir} (1)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 4

where for each server j and user i, Aij = (Aij1, ..., Aijm)T

is the allocation vector and Aijr is the share of resource r
allocated to user i on server j represented as a fraction over
the total amount of resource r in the entire system. And, Ai =
(Ai1, ..., Aik) is the allocation matrix for user i.

In other words, it is how much of the system’s resource has
been given to the most limiting resource of that user summed
over all existing servers. An example case will be given in the
next subsection to further explain the global dominant share
definition.

To summarize the system model, this is a time step based
system where at each time step, the system operates as follows:

1) A set of users arrive to the system (may be an empty
set). Each user will have a set of tasks to be completed
(assumed to be non-empty). Information regarding these
tasks are not known to the system until their arrival.

2) A user’s tasks can be ordered or unordered, splittable or
unsplittable. We will consider all four possible cases. We
will also assume tasks are non-preemptive, that is, they
cannot be stopped once they have started computing.

3) The system will then allocate a portion of resources on
any amount of servers to each user (new and existing)
based on the DRF scheme. This means that existing
users can have their allocation changed.

4) After the resources have been allocated, the tasks will
be run for one time step using the resources that they
have been assigned.

5) Any users who have completed all their tasks will now
leave the system.

6) Repeat for next time step.

A. Example Case

To illustrate the idea behind the DRF scheme, a simple
example with 2 servers and 2 users is given. The setting is
as follows:

• Server 1: 5 CPU 11 memory / server 2: 11 CPU 5 memory
• Server 1 capacity vector: (5/16, 11/16) / server 2 capacity

vector: (11/16, 5/16)
• User 1’s task requirements: 1 CPU 0.5 memory / user 2’s

task requirements: 0.5 CPU 1 memory
• Assume both users have an infinite number of these tasks
• User 1’s resource demand vector: (1/16, 1/32) / user 2’s

resource demand vector: (1/32, 1/16)
• User 1’s normalized resource demand vector: (1, 1/2) /

user 2’s normalized resource demand vector: (1/2, 1)
From the normalized resource demand vectors, we can see

that CPU is user 1’s global dominant resource and memory is
user 2’s global dominant resource. Optimally, it is obvious that
user 1 should be allocated all of server 2 and user 2 should
be allocated all of server 1. Following this allocation, user
2’s allocation is (5

16 ,
11
16). User 2’s global dominant share is

min{ 5/161/2 , 11/16
1 } = 10

16 , which is associated with the CPU
resource. Similarly, user 1’s global dominant share is 10

16 .
Notice that the two users’ global dominant shares are the same
and also the maximum that they can be. So, the system would
allocate all of server 1 to user 2 and let it run 10 tasks and
allocate all of server 2 to user 1 and let it run 10 tasks as well.

This will continue until a new user arrives and the resources
will be reallocated. This allocation results in equal global
dominant share and 15

16 or around 94% resource utilization.
Instead of using global dominant share, there exists a

simpler way to extend the DRF scheme to our multi-server
environment by applying the DRF scheme to each server
individually. However, it is easy to show that this approach is
naively inappropriate using the same example case as above.

Following this approach, we would consider the two servers
separately. In server 1, both users’ dominant resource is CPU.
So, to maximize the minimum dominant share, both users
will receive half of the available CPU which would be 2.5
each. Similarly, in server 2, both users’ dominant resource
is memory, then they will both receive half of the available
memory resource which is also 2.5 each. So, user 1 will be
able to run 2.5 tasks on server 1 and 5 tasks on server 2. User
2 will be able to run 5 tasks on server 1 and 2.5 tasks on
server 2. Both users will be able to run 7.5 tasks each. This
is far worse than the solution found previously. Furthermore,
the resource utilization for the system is 22.5

32 or around 70%,
which is also evidently much worse than the previous solution.

III. PROBLEM FORMULATION

The fairness maximizing optimization problem is defined as
follows:

maximize
A

min
i∈T

Gi(Ai) (2a)

subject to∑
i∈T

Aijr ≤ cjr, j = 1, ..., k, r = 1, ...,m, (2b)

Ai ∈ {0, 1}mk, i ∈ T (2c)

Recall that Ai = (Ai1, ..., Aik) is the allocation matrix for
user i and Gi(Ai) :=

∑
j∈S minr∈R{Aijr/dir} is the global

dominant share of user i. To summarize, this optimization
problem aims to maximize the minimum global dominant
share among all users such that no server’s resource capacities
are violated.

Theorem 1: This problem is NP-hard
Proof. Consider the bin packing problem:

minimize
x, y

N∑
i=1

yi (3a)

subject to
N∑
i=1

xji = 1, j = 1, . . . ,K, (3b)

K∑
j=1

wjxji ≤ Byi,i = 1, . . . , N, (3c)

yi ∈ {0, 1} i = 1, . . . , N, (3d)
xji ∈ {0, 1} j = 1, . . . ,K, i = . . . , N (3e)

Now, consider a single resource instance of our resource
allocation problem where items and bins correspond to tasks

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 5

and servers, respectively. The single resource corresponds to
the size limitations in the bin packing problem, that is, the
size of a item wj corresponds to the resource requirement of
a task and the capacity of a bin B corresponds to the resource
capacity of a server. Then, the bin packing problem exactly
corresponds to a single resource instance of our problem where
each user has exactly one task. The bin packing problem
(decision version) asks if all items can fit into A bins where
A is a given constant. Notice that fitting all tasks onto A
servers in our resource allocation problem would produce a
unique objective value which would be the global dominant
share of the smallest task. This value is unique since if any
task was to remain unassigned to a server, the minimum global
dominant share would be 0. Therefore, the following questions
are equivalent:

• Can all tasks be assigned onto A servers?
• Can there be such a task assignment onto A servers where

the minimum global dominant share is bj = mini∈K bi?
Therefore, we can see that the bin packing decision problem

can be reduced to a decision instance of the formulated
optimization. Since the bin packing problem is known to be
NP-hard, our formulated resource allocation problem is NP-
hard as well.

IV. PROPOSED SOLUTION

As mentioned previously, there are different types of tasks
that can be sent to the system. A user’s tasks can be splittable
which means they can be allocated an integer multiple of its
resource requirements to complete proportionally faster (two
times the required resources means two times the completion
speed) or unsplittable which means that they complete at
the same speed as long as its requirements are satisfied. A
user’s tasks can also be ordered where each task must be
completed in a specific order or unordered where the tasks
can be completed in any order and at the same time. For
ordered tasks, it is likely that data must be transferred between
the tasks, as such they must be completed on the same server
since it will be inefficient and expensive to offload tasks of the
same chain onto different servers. Furthermore, a task chain
cannot be interrupted once it has started. In this paper, we will
consider four different cases:

1) all users have unsplittable and unordered tasks
2) all users have splittable and unordered tasks
3) all users have unsplittable and unordered tasks
4) all users have splitaable and ordered tasks

A. Unsplittable and Unordered

In this section, we will assume all users have a set of
unsplittable and unordered tasks. This means that tasks from
the same user need not be on the same server since they are
unordered. This is the least restricted case where tasks can be
scheduled on any server and in any order. It is also meaningless
to assign a task more than its required resource since it does
not increase its completion speed. Algorithm 1 is a proposed
heuristic to schedule tasks in this scenario.

At each time step, Algorithm 1 repeatedly picks the user
with the lowest global dominant share and schedules its most

Algorithm 1 Unsplittable and Unordered
1: for each time step do
2: new users arrive
3: available tasks ← all unassigned tasks of every user
4: while there are available tasks do
5: current user i ← user with the smallest global

dominant share Gi(Ai)
6: current task j ← available task of current user i

with the largest resource demands
∑

dj
7: if no server can fit current task j then
8: remove current task j from available tasks
9: else

10: assign current task j to best fit server
11: update remaining server resources and avail-

able tasks
12: end if
13: end while
14: end for

resource demanding task until there are no remaining tasks
left or there is no more resources available. By picking the
user with the lowest global dominant share (line 5), we aim to
maximize the minimum global dominant share across all users,
which is the objective of our optimization problem. Instead
of picking any task, the most resource demanding tasks are
picked first to further minimize the variance between the global
dominant shares (line 6). Consider the following example:

• 1 server with 10 units of a single resource
• 2 users each with 4 tasks with the following resource

demands: (1, 1, 1, 4)
If we schedule the tasks based on some arbitrary order say:

(1, 1, 1, 4). Then, the result would be one user getting 7 units
of the resource and the other user getting only 3. However,
if the most resource demanding tasks are picked first, then
the result would be both users getting 5 units of the resource
which means equal global dominant shares. Hence, it would be
the optimal solution since it maximizes the minimum global
dominant share. From this example we can see that scheduling
the most resource heavy tasks can be beneficial.

After picking the most resource heavy task, we assign to it
to the best fit server. In this case, the fitness of assigning task i
to server j is defined by F (i, j) = ||Di/Di1− c∗j/c

∗
j1|| where

c∗j is the vector representing the remaining resources of server
j. Then in line 10 of Algorithm 1, task i’s best fit server is
characterized by the server who produces the smallest F (i, j)
value. In other words, the best fit server is the server whose
remaining resource vector is the most similar to its resource
demands. This ensures that CPU heavy tasks are assigned to
CPU heavy servers, for example.

B. Splittable and Unordered

In this section, we will assume all users have a set of
splittable and unordered tasks. Tasks from the same user
need not be on the same server since they are unordered.
Tasks can be allocated an integer multiple of their required
resources to decrease completion time. Splittable tasks add

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 6

a new dimension to the resource allocation problem since it
must be considered if a resource is better used to speed up an
existing task or to begin a new task. Furthermore, since it is
now possible to allocate more than the required resources to a
task, we can get closer to equal global dominant shares than
in the previous case. Algorithm 2 is the proposed heuristic for
the splittable and unordered case.

Algorithm 2 Splittable and Unordered
1: for each time step do
2: new users arrive
3: available tasks ← all unassigned tasks of every user
4: while there are available tasks do
5: current user i ← user with the smallest global

dominant share Gi(Ai)
6: current task j ← available task of current user i

with the largest resource demands
∑

dj
7: if no server can fit current task j then
8: remove current task j from available tasks
9: else

10: assign current task j to best fit server
11: allocate nDj resources where n minimizes

V ari(Gi(Ai)) and n < lj
12: update remaining server resources and avail-

able tasks
13: end if
14: end while
15: end for

Due to the similarities of the two cases, Algorithm 2
works similarly to Algorithm 1. Once again, at each time
step, the system repeatedly picks the user with the lowest
global dominant share (line 5) and schedules its most resource
demanding task (line 6) until there are no remaining tasks
left or there is no more resources available. Also, the best fit
server mentioned in line 10 is the same characterization as in
Algorithm 1 where the server with the most similar remaining
capacity vector is chosen.

The reasoning for this design is the same as in the previous
case. The key difference is how to determine what integer
multiple of the required resources to allocate to each scheduled
task.

Recall that the DRF scheme’s objective is to maximize the
minimum global dominant share across all users, however, it
is difficult to maximize this in each step of the allocation
process since the lowest global dominant share user just needs
to surpass another user’s global dominant share to do so.
However, the aim behind the maximization of the minimum
global dominant share is to achieve a balanced resource share
across all tasks. Therefore, the proposed algorithm allocates
resource such that to minimize the variance of all global
dominant shares (line 11). However, there is the requirement
that a task j should not be allocated more than lj times its
resource requirements where lj is its execution time.

Theorem 2: In the unordered and splittable case, a task
j should not be allocated more than lj times its resource
requirements.

Proof. By allocating lj times its resource requirements to
task j, its execution time is reduced to 1 time step which is
the lowest that it can be in our time step model. Increasing
its allocation any further becomes a wasteful use of resources.
Therefore, task j must not be allocated more than lj times its
resource requirements.

C. Unsplittable and Ordered

In this section, we will assume all users have a set of
unsplittable and ordered tasks. Tasks from the same user must
be on the same server.

Since this paper approaches the task scheduling problem
from a fair allocation perspective, this case becomes trivial.
In this case, it is meaningless to assign more than required
resources to a user since tasks are unsplittable. Also, since
each user has a task chain, a user will only need to run
one unsplittable task at any given point. As such, there is
no decision to be made from a fairness perspective as each
user only requires a fixed amount of resources at any given
moment and allocating more will not be beneficial to the user
at all. Therefore, we will not propose a heuristic for this case.

D. Splittable and Ordered

In this section, we will assume all users have a set of split-
table and ordered tasks. Tasks from the same user must be on
the same server and a task chain cannot be interrupted. Tasks
can be allocated an integer multiple of their required resources
to decrease completion time. This case is rather complex since
a task chain can include tasks with wildly different resource
demands which makes it difficult to allocate without being
wasteful. Furthermore, allocation can be changed during a task
chain based on the task currently being executed. Overall, this
means a lot more decisions will need to be made in order
to achieve the most fair allocation. Algorithm 3 describes the
proposed algorithm. Since, in this case, each user has exactly
one task chain, we will use the terms ”user” and ”task chain”
interchangeably. That is, user i and task chain i refer to the
same thing.

** The best fit server for a given task chain is characterized
by smallest F (i, j) = ||zi/zi1 − c∗j/c

∗
j1|| for user i and server

j where c∗j is the vector representing the remaining resources
of server j and zi is the size characteristic of user i.

At each time step, if new users arrive, Algorithm 3 will
first compute every new user’s size characteristic which, for
user i, is defined by zi = D∗

i . D∗
i (line 7). This is the vector

representing the largest demands of each resource in the entire
task chain. For example, the largest demands of each resource
in the task chain (1, 5), (5, 1), (6, 2) is (6, 5). Then, the size
characteristic zi for the user with this task chain would be
(6, 5). In other words, if user i is allocated zi resources, then
it can execute its task chain in its entirety. Then, we reduce all
users currently executing task chains down its lowest required
amount of resources which is zi for user i (line 10). This is to
allow room for the new users to be allocated resources but at
the same time not to interrupt any existing task chain. Then,
the algorithm will select the user with the smallest global
dominant share, however, since all new users have global

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 7

Algorithm 3 Splittable and Ordered
1: for each time step do
2: new users arrive
3: if new users is empty then
4: pass
5: end if
6: for user i ∈ new users do
7: size characteristic zi ← D∗

i

8: end for
9: for user i ∈ existing users do

10: reduce Ai to zi
11: end for
12: available users ← all users
13: while available users is non empty and server re-

sources are non empty do
14: current user i ← user with the smallest global

dominant share Gi(Ai) tie break by largest size charac-
teristic zi

15: if no server can fit current user i then
16: remove current user i from available users
17: else
18: assign current user i to best fit server
19: allocate nzi resources where n minimizes

V ari(Gi(Ai)) with n < maxj∈ilj
20: end if
21: update server resources and available users
22: end while
23: end for

dominant share 0, this selection will have a tie break by largest
size characteristic zi (line 14). This is because the largest size
characteristic typically denotes the most resource demanding
users. We select the most resource demanding users to allocate
first due to it being easier to allocate large task chains when
there is more resource available. Then, we select the best fit
server based on the size characteristic and assign the task chain
to this server until its completion (line 18). The best fit server
for a given task chain is characterized differently than for a
single task. In this case, the fitness of server j for task chain
i is defined F ′(i, j) = ||zi/zi1 − c∗j/c

∗
j1|| where c∗j is the

vector representing the remaining resources of server j and zi
is the size characteristic of task chain i. Then, the proposed
algorithm allocates an integer multiple amount of resource
such that to minimize the variance of all global dominant
shares (line 19). However, there is the requirement that a user
i should not be allocated more than maxj∈ilj times its size
characteristic zi. Repeat for next time step.

Theorem 3: In the splittable and ordered case, a task chain
i should not be allocated more than maxj∈ilj times its size
characteristic zi.

Proof. Consider allocating maxj∈ilj times its size charac-
teristic zi amount resources to task chain i. Then, for each task
j in task chain i, it will be executed on at maxj∈ilj times
zi amount of resources. By definition, maxj∈ilj ≥ lj and
zj ≥ Dj . Hence, each task j in task chain i has its execution
time reduced to less than or equal to 1 time step which is
the minimum it can be. Therefore, it is wasteful to allocate

more resources to this task chain. Therefore, a task chain i
should not be allocated more than maxj∈ilj times its size
characteristic zi.

V. ALGORITHM ANALYSIS

A key characteristic is that the proposed algorithms must
be very low complexity. This is due to the highly dynamic
nature of online scheduling in fog computing. Existing cloud
clusters have server populations in the tens of thousands
with even more users and task requests. As an augment to
the cloud computing paradigm, fog computing is expected
to be implemented at the same scale. Furthermore, these
algorithms must be run at every time step, therefore the
scheduling algorithms must not only be high effective but also
highly efficient. Following, we will prove the termination and
complexity for each of the proposed algorithms.

Theorem 4: Algorithm 1 Unsplittable and Unordered termi-
nates and has complexity O(n2) where n is the number of
available tasks.

Proof. Suppose there are n available tasks and m servers
at each time step. Then, we will need to first find the user
with the smallest global dominant share which takes O(logn)
time in the worst case. Then, we must select this user’s task
with the largest resource demands which takes O(logn) time
in the worst case. Then, we must find the best fit server for the
selected task which takes m time since we must compute the
best fit function for each server. In the worst case, we must
do this for all n tasks. Then, the complexity of this algorithm
is O(n(m + logn)). Without loss of generality, assume that
n > m, then O(n(m + logn)) = O(n2 + nlogn) = O(n2).
Therefore, Algorithm 1 is O(n2). Furthermore, since n is
finite, Algorithm 1 terminates.

Theorem 5: Algorithm 2 Splittable and Unordered termi-
nates and has complexity O(n2) where n is the number of
tasks.

Proof. Suppose there are n tasks and m servers at each time
step. Algorithm 2 performs similarly to Algorithm 1. The key
difference is needing to find the variance of all users’ global
dominant share after the selection of a task. Computation
of variance takes O(n) time in the worst case. Then, the
complexity of this algorithm is O(n(m + n)). Without loss
of generality, assume that n > m, then O(n(m + n)) =
O(n2 + n2) = O(n2). Therefore, Algorithm 2 is O(n2).
Furthermore, since n is finite, Algorithm 2 terminates.

Theorem 6: Algorithm 3 Splittable and Ordered terminates.
Proof. Suppose there are n users and m servers at each

time step. Algorithm 3 will compute the size characteristic zi
for all new users and reduce allocations Ai for all existing
users which takes O(n) time. Then, we will need to find the
user with the smallest global dominant share tie broken by
largest size characteristic which takes O(logn) time in the
worst case. Then, we must find the best fit server for the
selected user which takes m time since we must compute the
best fit function for each server. In the worst case, we must do
this for all n users. Then, the complexity of this algorithm is
O(n(m+ logn+ n)). Without loss of generality, assume that
n > m, then O(n(m+ logn+n)) = O(nm+nlogn+n2) =

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 8

Fig. 3. Average Resource Utilization

O(n2). Therefore, Algorithm 3 is O(n2). Furthermore, since
n is finite, Algorithm 3 terminates.

VI. SIMULATION RESULTS

The simulation task data comes from Google cluster-usage
traces. The traces contain resource demand/usage information
of over 900 users (i.e., Google services and engineers) on a
cluster of 12,000 servers. The server configurations of these
servers are provided by Wang et al. in 2014 [13]. The tasks and
servers used in our simulations are randomly extracted from
the above data. Each time, we simulate 5 users who arrive
based on a Poisson process with mean rate of 0.5 on 3 servers
with 2 resource types (CPU and memory). Each user has a
random amount of tasks.

To evaluate the performance of the proposed algorithms,
three baseline algorithms will be used: First Come First Serve
(FCFS), Randomized, and Shortest Job First (SJF). The first
two algorithms are self explanatory. SJF is a very efficient
algorithm used to minimize waiting time for scenarios where
tasks’ execution time is known. It works by scheduling the
tasks with the shortest execution time first. In fact, it is optimal,
in that for a given set of processes and their execution times
it gives the least average waiting time for each process. While
it is not optimal in our multi-server, multi-resource, online
environment, it still provides a good benchmark. Since we
have multiple servers, SJF will decide on which server to
assign each task to using the same best fit characterization
used in the proposed algorithms. Furthermore, to evaluate
Algorithm 2 and Algorithm 3, a splittable version of all three
baseline algorithms are used. In these versions, each task is
allocated a random integer multiple of its required resources.
The splittable versions of the baseline algorithms work the
same otherwise. Each experiment was run 20 times for more
generalized results since the input data are randomly selected.

A. Algorithm 1 and Algorithm 2

We will first evaluate the performance of Algorithm 1 and
Algorithm 2. Algorithm 2 is evaluated with Algorithm 1
because they are very similar in design. Also, it allows us
to observe the effect of having splittable tasks in the system.

1) Resource Utilization
Our first evaluation focuses on how well the algorithms

utilize the available resources in the scheduling system. Fig. 3
shows the average resource utilization percentage of all sim-
ulated algorithms. We can see that Algorithm 1 slightly

Fig. 4. Average Completion Time

Fig. 5. CPU Utilization Over Time

outperforms SJF (unsplittable) and severely outperforms FCFS
(unsplittable) and Randomized (unsplittable). Higher resource
utilization correlates to faster completion times and Fig. 4
reflects this. Algorithm 1 completes tasks at a similar speed
as SJF (unsplittable) and much faster than FCFS (unsplittable)
and Randomized (unsplittable). Since Algorithm 1 is designed
such that it maximizes the minimum global dominant share
across all users, performing similar to SJF (unsplittable) which
focuses on task completion speed can be considered a success.

In the splittable case, a similar result is shown. Algorithm 2
performs the best in terms of resource allocation followed
by SJF (Splittable) and then by Randomized (Splittable) and
FCFS (Splittable). This is mirrored in Fig. 4.

It is expected that Algorithm 2 outperforms all other algo-
rithms, both splittable and unsplittable in terms of resource
utilization. This is due to splittable tasks being able use more
resources since the system can fill gaps of unused resources
by allocating more to a splittable task, and consequently
these splittable tasks will complete faster resulting in better
performances in completion speeds as well. While Algorithm 1
performs similarly to SJF (Unsplittable), Algorithm 2 outper-
forms SJF (Splittable) by a rather significant margin.

In summary, the proposed algorithms performed similarly
or better than their counterparts in terms of both resource
utilization and task completion times.

Fig. 5 and Fig. 6 shows the resource utilization over the
duration of one sample simulation. In these figures, we can
observe the changes in resource allocation over each individual
time step. The FCFS and Randomized algorithms are omitted
as to not clutter the figures. We can see that while Algorithm 1
and Algorithm 2 perform better than their SJF counterparts on
average, they may perform worse during specific time steps.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 9

Fig. 6. Memory Utilization Over Time

Fig. 7. Average Dominant Share Variance

This is due to the nature of online environments where users
arrive continuously. Then, since Algorithm 1 and Algorithm 2
complete tasks faster than their SJF counterparts, they may
have more downtime between the arrival of users. This would
explain why sometimes the SJF algorithms have higher re-
source utilization but lower completion times overall.

2) Fairness

The second evaluation will focus on the main objective
of this paper, fairness between users. Recall that the DRF
scheme aims to maximize the minimum global dominant share
across all users. Then, to evaluate this objective, we use
two metrics: average variance of all global dominant shares,
and average minimum dominant share. Fig. 7 and Fig. 8
summarize our results. Fig. 7 displays the variance of the
global dominant shares of all users at every time step averaged
throughout the simulations. Lower variance typically correlates
to higher minimum global dominant share. Fig. 8 displays the
minimum global dominant share at every time step averaged
throughout the simulations. The higher the minimum global
dominant share the better as per the DRF scheme. Between
the two proposed algorithms, Algorithm 2 performs better
than the nonsplittable cases in terms of the two metrics. This
is due to the splittable-ness of its tasks allows it to have
more freedom when allocating resources to users. It also
performs significantly better than SFJ Splittable. We can see
the two figures show similar results where Algorithm 1 and
Algorithm 2 have better results than the other algorithms. This
is to be expected as the other algorithms do not consider global
dominant shares at all.

Fig. 8. Average Minimum Dominant Share

Fig. 9. Average Resource Utilization

B. Algorithm 3

To evaluate the performance of the Algorithm 3, the same
3 baseline algorithms will be used: FCFS, Randomized, and
SJF. However, since none of the three algorithms are meant for
splittable tasks, they will allocate a random integer multiple of
the required amount of resources per task chain. They will also
pick servers using the best fit characterization. The simulations
were run for 20 times for more generalized results since the
input data are randomly selected.

1) Resource Utilization
Our first evaluation, once again, focuses on how well the

algorithms utilize the available resources in the scheduling
system. Fig. 9 shows the average resource utilization per-
centage of all simulated algorithms. Results show that the
proposed Algorithm 3 outperforms all of the other algorithms
by a significant margin. Consequently, Fig. 10 shows a similar
result in completion times. In both metrics, SJF performs better
than FCFS and Randomized but not as good as Algorithm 3.

Fig. 11 and Fig. 12 shows the resource utilization over
the duration of one sample simulation. In these graphs, once
again, we see that the baseline algorithms have higher resource
allocations at specific time steps compared to the proposed
Algorithm 3. Algorithm 3 executes users’ task faster and the
users will leave the system faster which results in relative
downtime between the arrival of users where the available
resources aren’t being used.

2) Fairness
The second evaluation will focus on fairness between users.

To evaluate this objective, we will once again use two metrics:
average variance of all global dominant shares, and average

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 10

Fig. 10. Average Completion Time

Fig. 11. CPU Utilization Over Time

minimum dominant share. Fig. 13 and Fig. 14 summarize our
results. Fig. 7 displays the variance of the global dominant
shares of all users at every time step averaged throughout
the simulations. Fig. 8 displays the minimum global dominant
share at every time step averaged throughout the simulations.
We see that Algorithm 3 performs the best out of all simulated
algorithms. However, Algorithm 3 has extremely low global
dominant share variance but this does not translate to average
minimum dominant share as Algorithm 3 only slightly beats
out SJF in average minimum dominant share. This is due to the
nature of the ordered environment. Since each user’s tasks are
ordered, they cannot be completed in parallel and will hence
stay in the system for longer. Then, there will be more users
executing tasks in the system at any given time.

Fig. 12. Memory Utilization Over Time

Fig. 13. Average Dominant Share Variance

Fig. 14. Average Minimum Dominant Share

VII. CONCLUSION

This paper examines the online resource allocation problem
within fog computing under an environment that is multi-
server, multi-resource, and includes heterogeneous tasks. This
problem is approached from a fairness perspective where the
DRF scheme is used to formulate a fairness maximizing opti-
mization problem. Four different types of tasks are considered:
ordered/unordered, splittable/unsplittable. Three low complex-
ity heuristics are proposed and are evaluated against three
baseline algorithms. Results show that the proposed algorithms
perform similar to better in terms of task completion speed but
significantly better in terms of user fairness.

A key limitation in the algorithms proposed is that they
are not very generalizable. Realistically, not all requested
tasks will be the same in terms of ordered/unordered and
splittable/unsplittable. In the future algorithm that is able to
handle an environment where there are tasks with a variety of
characteristics. To do so, machine learning techniques would
likely have to be used such as deep reinforcement learning.

However, currently, machine learning is used to produce
highly specific models that are only equipped to handle some
highly specific instances of an optimization problem. We are
still quite far from being able to produce a highly generalizable
machine learning model that can be used to solve several,
or perhaps an entire class of, optimizations. Nevertheless, it
is without a doubt that machine learning is emerging as a
promising approach to solving optimization problems.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 11

REFERENCES

[1] A. Markus, and A. Kertesz. ”A survey and taxonomy of simulation
environments modelling fog computing.” Simulation Modelling Practice
and Theory 101 2020.

[2] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia.
”Fog computing: a comprehensive architectural survey.” IEEE Access 8
2020, 69105-69133.

[3] P. Hosseinioun, M. Kheirabadi, S. R. K. Tabbakh, and R. Ghaemi. ”aTask
scheduling approaches in fog computing: a survey.” Transactions on
Emerging Telecommunications Technologies 2020, e3792.

[4] I. Sabuncuoglu, and M. Bayız. ”Analysis of reactive scheduling prob-
lems in a job shop environment.” European Journal of operational
research 126.3 2000, 567-586.

[5] D. Ouelhadj, and S. Petrovic. ”A survey of dynamic scheduling in
manufacturing systems.” Journal of scheduling 12.4 2009, 417-431.

[6] Z. Wang, J. Zhang, and S. Yang. ”An improved particle swarm optimiza-
tion algorithm for dynamic job shop scheduling problems with random
job arrivals.” Swarm and Evolutionary Computation 51 2019, 100594.

[7] S. Bian, X. Huang, and Z. Shao. ”Online task scheduling for fog
computing with multi-resource fairness.” 2019 IEEE 90th Vehicular
Technology Conference (VTC2019-Fall) 2019.

[8] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A.
Goldberg. ”Quincy: fair scheduling for distributed computing clusters.”
In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles 2009, 261-276.

[9] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica. ”Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling.” In Proceedings of the 5th European
conference on Computer systems 2010, 265-278.

[10] G. Zhang, F. Shen, Y. Yang, H. Qian, and W. Yao. ”Fair task offloading
among fog nodes in fog computing networks.” In 2018 IEEE interna-
tional conference on communications (ICC) 2018, 1-6.

[11] M. Mukherjee, M. Guo, J. Lloret, R. Iqbal, and Q. Zhang. ”Deadline-
aware fair scheduling for offloaded tasks in fog computing with inter-fog
dependency.” IEEE Communications Letters 24 2019, 307-311.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. ”Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types.” In Nsdi, vol. 11 2011, 24-38.

[13] W. Wang, B. Li, and B. Liang. ”Dominant resource fairness in cloud
computing systems with heterogeneous servers.” In IEEE INFOCOM
2014-IEEE Conference on Computer Communications 2014, 583-591.

[14] A. Östman, ”Distributed Dominant Resource Fairness using Gradient
Overlay.” In unpublished Master’s thesis. KTH Royal Institute of
Technology 2017.

[15] D.C. Parkes., A. D. Procaccia, and N. Shah. ”Beyond dominant resource
fairness: Extensions, limitations, and indivisibilities.” ACM Transactions
on Economics and Computation (TEAC) 2015, 1-22.

	Introduction
	System Model
	Example Case

	Problem Formulation
	Proposed Solution
	Unsplittable and Unordered
	Splittable and Unordered
	Unsplittable and Ordered
	Splittable and Ordered

	Algorithm Analysis
	Simulation Results
	Algorithm 1 and Algorithm 2
	Resource Utilization
	Fairness

	Algorithm 3
	Resource Utilization
	Fairness

	Conclusion
	References

